HARBOUR BIOMED

Harbour BioMed: Advancing Global Biotherapeutics Innovation

Dr. Jingsong Wang

Founder, Chairman and CEO Harbour BioMed

> HBM HOLDINGS-B 02142.HK www.harbourbiomed.com

Harbour BioMed Rapidly Progressing Toward a Global Leading Biopharmaceutical Company

Leading Next Gen Biotherapeutics Innovation to Address Unmet Medical Needs in Global Market

3

Build a Highly Differentiated Portfolio Leveraging Industry Leading Fully Human Technology Platforms

- Worldwide patent protection
- Validated by **45+** industry and academic partners
- 9 projects in clinical stage
- >200 internal and external projects leveraging HBM platforms

Advantages of HBM Fully Human Antibody Platforms

Fully human classical antibody H2L2

- 1. Efficient and reliable (no need for humanization, high affinity)
- 2. Excellent druggability (immunity in mice, evolution by natural selection)
- 3. Great safety (low immunogenicity)

Fully human heavy chain antibody HCAb

- 1. Scarcity (the only fully human transgenic mice heavy chain antibody platform in the world)
- 2. Flexibility (widely used)
- 3. Good penetrability (small size, easy to penetrate tumor and tissue)

Fully human bispecific antibody HBICE

1. Unique and proven bispecific antibody mechanism

Internationally Renowned Scientific Advisory Board

FRANK GROSVELD PhD

- Co-founder and CSO of Harbour Antibodies, inventor of Harbour Mice®
- Professor and former Head of the Department of Cell Biology and the Department of Clinical Genetics at the Erasmus University Medical Center
- Fellow of the Roval Society and a member of the Roval Netherlands Academy of Arts and Sciences

JON WIGGINTON MD

- Chief Medical Officer, Cullinan Oncology; Advisos of MPM Capital
- Former Chief Medical Officer and SVP of Clinical Development at MacroGenics, Inc.
- Former Therapeutic Area Head of Immuno-Oncology, Early Clinical Research at BMS
- Former President of the Society for Immunotherapy of Cancer

ROBERT KAMEN PhD

- Venture Partner at Third Rock Ventures
- Co-founder and former chairman of BioAssets
- Former director of Neon Therapeutics and Harbour Antibodies
- Former president and unit head of Abbott Bioresearch Centre, Former SVP at Genetics Institute. Inc.
- Ph.D. in biochemistry and molecular biology from Harvard University

ROBERT KRAMER

PhD

Former VP and Head of Discovery for

Oncology Therapeutics at Janssen

Former VP Drug Discovery and Research

Ph.D. in pharmacology from the University

Research & Development, LLC

for Bristol-Myers Squibb (BMS)

of Vermont

CSO of Portage Biotech Inc.

PETER MOESTA PhD

- Former executive roles at Bristol-Myers Squibb
- Oversaw the development, production and worldwide launch of important medicines, such as Humira, Yervoy and Opdivo

KENNETH MURPHY MD. PhD

- Member of the National Academy of Sciences
- Eugene Opie First Centennial Professor of Pathology & Immunology, Washington University School of Medicine in St. Louis
- Ph.D. in pharmacology and M.D. from Hopkins University School of Medicine

ZHIGANG TIAN MD. PhD

- Academician of the Chinese Academy of Engineering
- Professor of the University of Science and Technology of China
- Council member of International Union of Immunological Societies
- Council member of Federation of Immunological Societies of Asia-Oceania

(^{III}) Bristol Myers Squibb[™] Johnson Johnson (^{III} Bristol Myers Squibb[™] - Abbott

Robust Pipeline Combining Advanced Clinical Programs and Next-Gen Biotherapeutics Addressing Highly Unmet Needs

		_			Status							
	Project	larget	Indication	Commercial Rights	Discovery	Pre-Clinical	IND	Phase I	Phase II	Phase	III BLA	L
Immunology			MG							Bi De	reakthrough Thera esignation	ару
			NMOSD						Ph 1b/2 ongoing Ph 3 ongoing			
	Batoclimab		ITP							Ph 2/3	ongoing	
	HBM9161	FcRn	GO	Greater China					Ph 2/3 o	ngoing		
			CIDP					IND approval by	NMPA			
		-	PV					IND application a	ccepted by NMPA			
	 Tanfanercept HBM9036 	ΤΝFα	Dry Eye Disease	Greater China							👂 Ph 3 ongoing	
	• HBM9022	SARS-COV-2	COVID-19	Global License to AbbVie								
	• HBM9378	TSLP	Asthma	Global								
		CTLA-4	Solid Tumors ^a						Ph 1b/2 ongo	ing		
	• HBM4003		Solid Tumors ^b	Global				Col	mbo with PD-1 Ph	1 ongoing		
			Solid Tumors ^c					Con	nbo with PD-1 Ph	1 ongoing		
Immuno-	• HBM7008	B7H4×4-1BB	Solid Tumors	Global								
Oncology	• HBM1022	CCR8	Solid Tumors	Global								
	• HBM1020	B7H7	Solid Tumors	Global								
	• HBM7020	BCMA×CD3	Multiple Myeloma	Ex-Greater China ¹								
	• HBM1007	CD73	Solid Tumors	Global								

🛛 💳 Partner 🛛 🛨 Registrational Clinical Trial 🛛 😐 In-license Program 🗨 Program from Harbour Discovery Platforms

1. Greater China rights out-licensed to Hualan Genetics

HBM

a. Melanoma, HCC, RCC and Other Advanced Solid Tumors

Melanoma, HCC, NEN and Other Advanced Solid Tumors
 Melanoma, HCC, NEN and Other Advanced Solid Tumors

c. NSCLC and Other Advanced Solid Tumors

Building World-class CMC & Manufacturing Capacity & Enhanced Commercial Strategy

CMC & GMP Manufacturing Capability

CMC Process Development

In-house CMC

Cell line / Cell culture /Purification /Formulation / Analytical development

•15-20 projects

• IND/BLA filling / CDMO Management / Process development, Process characterization, Process validation

Pilot Plant, Ready by 2022

Commercial Launch Readiness in Full Swing

Rapid Progress for Key Assets Towards Bringing Innovative Therapeutics to Patients Around the World

2021

- 4 clinical products with 2 in Ph 3 and 1 in global Ph 1/2
- 6 highly differentiated preclinical products with 2 entering IND application

• 3 BLAs

- 3 products in registrational trials globally
- Multiple next gen therapeutics entering INDs
 - 2022

- 2 commercial products and serials of product launches
- 3 products in registrational trials globally
- Multiple next gen therapeutics in global clinical trials

2023 & Beyond

HARB

Harbour BioMed Advancing Global Biotherapeutics Innovation

Next Gen Therapeutics •--

- Biology-driven
- Unmet medical needs driven
- Industry leading technologies to provide sustainable innovation engine
- Highly differentiated portfolio with FIC/BIC next gen therapeutics

- Global Innovation Centers
- Collaboration with leading global biopharmaceutical companies and top-notch academies to advance next gen therapeutics
- Development and commercialization of HBM products globally
- --• Global Innovation

HARBOUR

THANK YOU

HBM HOLDINGS-B

02142.HK www.harbourbiomed.com

HARBOUR BIOMED

Unleash Powerful Technology for HBM's Sustained Innovation

Dr. Yiping Rong Head of Research, Harbour BioMed

HBM HOLDINGS-B 02142.HK www.harbourbiomed.com

Drive Transformational Innovation with Three Pillars in HBM R&D

HBM's Antibody Discovery **Platform is the Engine of** Portfolio Innovation

Cutting Edge Fully Human Antibody Platforms Enable Sustained Invention of Novel Molecules

Integrated Technology Platforms Ensure Efficient Discovering Next-Gen Fully Human Antibody Therapeutics

Transgenic fully human antibody mice

- No need for humanization, affinity maturation
- H2L2 and HCAb with knock-out or inducible immunization techniques

Single B cell cloning (Beacon System)

 Accelerated antibody discovery process and increased productivity

5

Deep mining of rare clones

Display and antibody engineering to support bispecific molecule design

Antibody generation with Single B Cell cloning method (Beacon) in ~4 months*

*Traditional hybridoma method need 7-9 months with additional 3-6 months of humanization

Advancing HBM Core Technologies for Next-Gen Therapeutics Beyond Harbour Mice

16

Advancing HBM Core Technologies for Next-Gen Therapeutics

Using mRNA Technology to Tackle Challenging Targets for Ab Generation

CCR8-mRNA-LNP raised stronger and specific immune responses than CCR8 cells 1:100 Titer to CHOK1-CCR8 Titer to CHOK1 1:1K 150000 ¬ 1:3K 100000 1:9K 50000 MFI 1:100 20000 1:1K 10000 1:3K 1:9K #441 #444 #445 #523 #565 PB #441 #444 #445 #523 #565 PB

Tailored and efficient mRNA-lipid nanoparticles (LNP)

CCR8-mRNA-LNP had homogeneous size distribution and > 80% encapsulation efficiency

Identified candidate with cross-reactivity to cyno CCR8

CCR8-cells

CCR8-mRNA-LNP

CCR8-cells

BIOMED

immunogen _{CCR8}-mRNA-LNP

Advancing HBM Core Technologies for Next-Gen Therapeutics

HBM Proprietary Fully Human HCAb Site-Specific ADC is the New Class ADC Platform

HBM Innovative R&D Strategy is Powered by Unique Technology Platform

Current IO Therapy – Only 20-30% Patients Respond to PD1/PDL1 Therapies

- Huge PD1/PD-L1 market
- A large number of indications: lung cancer, liver cancer, gastric cancer, esophageal cancer, melanoma, lymphoma, urothelial cancer, breast cancer, nasopharyngeal cancer, colorectal cancer, cervical cancer, etc.
- + 70-80% of patients are resistant or have no response for PD1/PD-L1 -- huge market potential

HBM Provides Innovative Solutions for Next-Gen Immuno-Oncology Therapy

21

HBICE®	Target validation	Lead generation	candidate selection	Pre-clinical	IND
HBM7020	Multiple my	veloma			
HBM7008	Ovary canc	er, TNBC, Lung	g cancers		
Undisclosed	Multiple so	lid tumors			
Undisclosed	Gastric can	cer, pancreatio	cancer		

HBICE[®] Expands Immune Cell Engagers Beyond CD3 TCE

HBM is at the Forefront of New Generation of T-Cell Engager Bispecific Antibodies

HBM7008: First-in-Class Bispecific Antibody from the HBICE® Platform

Highlights:

- 1) MoA: Crosslinking dependent 4-1BB activation is stringently mediated by B7H4 binding
- 2) Molecule: Based on HBICE® platform to optimize the geometry for 4-1BB clustering, T/Tumor cell dual binding
- 3) Druggability: Fully human sequences from Harbour mice undergone natural in-vivo selection. Symmetrical format with excellent biophysical properties
- 4) Indications: Mutual exclusively expressed with PD-L1, potential for PD1/PD-L1 therapy refractory patients, particularly in multiple gynecological cancers

HBICE[®] Platform Provides the Best Geometry Design for the MoA of HBM7008

Linker/ Sequence Engineering

HBM7008: First-in-Class Bispecific Antibody from the HBICE® Platform

Encouraging monkey DRF and Tox data also suggest its excellent PK and safety profile

HARBOUR

Solution 2: Unique Treg Depletion Mechanism – *Leading Treg Based Next-Gen Antibody Therapeutics*

Two main mechanisms of immune tolerance: T cell receptor-mediated immune exhaustion; **Regulatory T cell-mediated** immune surveillance

Projects	Target validation	Lead generation	Candidate Selection	Pre-clinical	IND	Ph1	Ph2
HBM4003 (CTLA4)							
HBM1022 (CCR8)							
Undisclosed							

Unique Treg Depletion Mechanism to Develop Next-Gen Antibody Therapeutics

		HBM1022 (CCR8)	HBM4003 (CTLA-4)			
	 Potently antagonizes CCR8-expressing cel 	CCL1-CCR8 signaling and depletes Is	 Enhanced ADCC strategy to deplete CTLA4+ Treg cells in tumor 			
Highlights	 First reported function function for the second seco	onal antibody that cross-reacts with	 The world's first fully human heavy chain antibody to enter the clinical study 			
	 The only CCR8 antil animal models instered 	oody shown anti-tumor efficacy in ad of using surrogate antibody	 Developing monotherapy and combo clinical research 			
Indication	Solid Tumors		Solid Tumors			
Development Stage	IND in 2022	1. High CCR8 expressing Tregs allow for antibody mediated depletion via ADCC	Monotherapy Ph1b/2 Combo therapy Ph1 Mod 1- Checkpoint Inhibit Mod 2- Tree Depletion Mod 2- Tree Depletion Mod 2- Tree Depletion Mod 2- Tree Depletion Mod 2- Tree Depletion M			
		Tumor 2. CCR8 blockade inhibit ligand CCL1 induced chemotaxis of Treg				

TARBUUR

HBM1022: CCR8 is a Novel Target Expressed on Tumor Infiltrated Treg Cells

HBM1022 Highlights:

- 1. Potent tumor resident T_{reg} depletion activity
- 2. Potent inhibition of CCL1-induced signaling pathway / in vivo anti-tumor efficacy
- 3. Comparable human/cyno binding affinity
- 4. Significant potential for breast cancer, colon cancer, and multiple solid tumors and hematological malignancies

Breast cancer, Analysis of over 70 individual patients Immunity 2016, 45:1122–1134

Build HBM1022: A Unique CCR8 Antibody Shows Treg Cell Depletion and Anti-Tumor Efficacy in Pre-clinical Models

HARBOUR

Solution 3: Focus on Novel Immune Escape Pathway Develop First-in-Class Targets in B7 Family

The most important tumor immunomodulatory family, Targets of current immuno-oncology drugs are all from this family

Projects	Target validation	Lead generation	Candidate Selection	Pre-clinical	IND
HBM7008					
(B7H4x4-1BB)					
HBM1020					
(B7H7)					
Undisclosed					

Highlights:

- 1) First-in-class target potentially serves as an alternative immune escape pathway
- 2) Potent receptor blocking, T cell activation activity and excellent in vivo efficacy in humanized tumor models
- 3) Huge potential to treat PD-L1 negative or anti-PD1/PD-L1 refractory cancer patients

HBM1020: First-in-Class Antibody Shows Promising Anti-Tumor Preclinical Efficacy in Multiple Cancer Types

HARBOUR

Building HBM Continuously Drives Innovative Portfolio and Leads the Next-Gen Therapeutics

BIOMED

HARBOUR

THANK YOU

HBM HOLDINGS-B

02142.HK www.harbourbiomed.com
HARBOUR BIOMED

Breakthrough IO Therapy for Unmet Medical Needs Treg Depletion – A Novel Mechanism Unlocking Therapeutic Potential

Prof. Shun Lu Director of Clinical Medicine Department Shanghai Chest Hospital

HBM HOLDINGS-B 02142.HK www.harbourbiomed.com

DISCLOSURE

- Received research support from AstraZeneca, Hutchison, BMS, Heng Rui, Beigene and Roche, Hansoh, Lilly Suzhou Pharmaceutical Co.Ltd
- Received speaker fees from Astra Zeneca, Roche, Hansoh, Hengrui Therapeutics
- An advisor and consultant of Astra Zeneca, Pfizer, BoehringerIngelheim, Hutchison MediPharma, ZaiLab, GenomiCare, Yuhan Corporation, Menarini, InventisBio Co. Ltd., and Roche.

Cancer Is A Major Public Health Problem and the Second Leading Cause of Death Worldwide

- Lung cancer is the most frequent cause of cancer-related deaths worldwide.
- Much progress has been made in research, cancer screening, and personalized therapy (precision medicine) in recent years. However, most patients
 with advanced cancer will ultimately progress which remains a great unmet medical need.

The Global Cancer Observatory - All Rights Reserved, December, 2020. Hirsh et al. Lancet. 2017 Jan 21;389(10066):299-311.

Cancer Immunotherapy – 2013 Science "Breakthrough of the Year" and 2014 Special Nature Edition

La seconda de la con

Cancer Immunotherapy – 2013 Science "Breakthrough of the Year" and 2014 Special Nature Edition

James P. Allison • Tasuku Honjo "for their discovery of cancer therapy by inhibition

of negative immune regulation"

THE NOBEL ASSEMBLY AT KAROLINSKA INSTITUTET

THE NOBEL ASSEMBLY AT KAROLINSKA INSTITUTET

"for their discovery of cancer therapy by inhibition of negative immune regulation"

Immune Combination Regimens Are in Full Swing, And the Exploration of New Combinations and New Targets Is the Key to Overcome IO Resistance

- 3-fold increase in number of combination trials in 2020 compared to 2017¹
- Added 129 targets from 124 target groups ¹

 Chemotherapy, CTLA-4 and VEGF/R are most common partners in combination with anti- PD-(L)1²

1. https://www.cancerresearch.org/scientists/immuno-oncology-landscape/pd-1-pd-11-landscape

2. Upadhaya S, et al. Combinations take centre stage in PD1/PDL1 inhibitor clinical trials. Nature Reviews Drug Discovery (November 2020)

The Combination of CTLA-4 Antibody and PD-1 Antibody Has Synergistic Effect – Traditional View

Antoni Ribas, NEJM epub June 2012

Anti-CTLA-4 Treatment Improves anti-PD-1 Responses and Durability in Multiple Tumor Types

Source: NCBI, NEJM, PubMed, the Journal of Experimental & Clinical Cancer and other publicly clinical information.

Note: Reflects clinical data from various Nivolumab (PD-1) and Nivolumab + Ipilimumab (PD-1 + CTLA-4) trials; NR denotes median not reached.

(1) Objective Response Rate: 2L+ CRC, Urothelial Carcinoma, NSCLC, Esophagogastric, 3L+ SCLC; Overall Response Rate: 1L Melanoma, Metastatic Sarcoma, HCC; Disease Control Rate: Mesothelioma.

Scientific Rationales of Immunotherapy in NSCLC

High rates of somatic mutations and high proportion of patients with immune-inflamed contexture in NSCLC contribute to increased sensitivity to immunotherapy.

Hegde and Chen. Immunity. 2020;14;52(1):17-35. Salmon et al. Nat Rev Cancer. 2019;19(4):215-227.

Immunotherapy has Comprehensively Changed the Treatment Landscape for Advanced Lung Cancer, but There Are Still Many Unknowns to be Explored

- IMPOWER-132
- CHCKMATE 227

Immunotherapy for Metastatic NSCLC: Monotherapy? Combinations? What Is the Future?

KEYNOTE-024 IMPOWER-110 KEYNOTE-042	KEYNOTE-189 IMPOWER-130 CAMEL KEYNOTE-407 IMPOWER-131	PACIFIC LUN 14-179 ETOP NICOLAS DETERRED	IMPOWER-150 LEAP-006 LEAP-007	CHECKMATE-227 CHECKMATE-9LA POSEIDON		
IO mono	Combo chemotherapy	Combo radiotherapy	Combo anti- angiogenesis	IO combinations	What is the future?	
 Only cover PD- L1-positive population ORR needs to be improved From IO monotherapy to combination therapies 	 Cover driv Significant However, 	 Cover driver gene negative population Significantly improved ORR compared with IO monotherapy However, it has encountered a therapeutic bottleneck 				

At present, the approved indications of pembrolizumab for lung cancer in mainland China are: ① PD-L1 TPS \geq 1% for first-line treatment of EGFR, ALK-negative locally advanced or metastatic NSCLC; ② combo pemetrexed/platinum for first-line treatment of EGFR, ALK-negative metastatic non-squamous NSCLC; ③ combo carboplatin and paclitaxel for first-line treatment of metastatic NSCLC patients. Nivolumab has been indicated for second-line treatment of advanced NSCLC in mainland China. Atezolizumab in Combination with Carboplatin and Etoposide for the First-Line Treatment of Extended Staged Small Cell Lung Cancer. Durvalumab in Mainland China for the treatment of Stage III unresectable NSCLC that has not progressed after concurrent chemoradiotherapy.

Paradigm 2021 – First Line Treatments for NSLCL without Actionable Driver Mutations

Anti-PD-1 monotherapy:

Pembrolizumab, Atezolizumab, Cemiplimab

ICI + chemo:

- Pembrolizumab + carboplatin + pemetrexed (nsq)
- Atezolizumab + carboplatin + paclitaxel + bevacizumab (nsq)
- Atezolizumab + carboplatin + nab-paclitaxel (nsq)
- Pembrolizumab + carboplatin + paclitaxel or nabpaclitaxel (sq)
- Nivolumab + ipilimumab + 2 cycles of chemotherapy (nsq/sq)

ICI combination: Nivolumab + ipilimumab

The Efficacy of anti-PD-(L)1 Monotherapies as First Line Treatment for NSCLC

Study name	KEYNOTE-024 ¹	CheckMate-026 ²	KEYNOTE-042 ³		IMPOWER 110 ⁴	MYSTIC ⁵	PEARL ⁶
Study drug	Pembrolizumab	Nivolumab	Pembrolizumab		Atezolizumab	Durvalumab	Durvalumab
Target population	PD-L1 ≥ 50% advanced NSCLC	PD-L1 ≥ 1% advanced NSCLC	PD-L1 ≥ 1% advanced NSCLC		PD-L1-selected advanced NSCLC	Advanced NSCLC	Advanced NSCLC
Patients enrolled	305	423	1247	262	572	1118	440
Main results	PFS: 10.3 vs 6.0m 2-yOS: 51.7% vs 34.2%	PFS (PD-L1 ≥ 5%): 4.2 vs 5.9 m, study failed to meet primary endpoint	OS: 16.4 vs 12.1m 2yOS: 39% vs 28%	OS: 20.0 vs 13.7m 2yOS: 45% vs 30%	TC3/IC3:20.2 vs 13.1m 1-yOS: 60.9% vs 50.6%	OS (TC ≥ 25%): 16.3 vs 12.9m Study fails to meet primary endpoint	PFS, OS (PD-L1 ≥ 25%)
HR (95% CI) P value	0.5 (0.37-0.68) P = 0.001	1.15 (0.91 – 1.45) P = 0.2511	0.82 (0.71- 0.93) P = 0.0018	0.65 (0.45-0.94) P = 0.0003	0.59 (0.4-0.89) P = 0.0106	0.76 (0.56-1.02) P = 0.036	/

1. Martin Reck et al. 2019 WCLC

2. N Engl J Med. 2017 Jun 22; 376 (25): 2415-2426

3. Tony S K Mok, et al. 2019

4. Spigel et al. IMpower110 Interim OS Analysis. 2019 ESMO

2018 ESMO-ASIA.

5.

 https://www.clinicaltrials.gov/ct2/show/NCT03003962?term=Durvalumab&cond=NSCLC&draw=3& rank=13

The Efficacy of anti-PD-(L)1 + Chemotherapy as First Line Treatment for NSCLC

Key ParameterPembro + Pemetrexed + Platinum (KN-189) 1, 2, 3		Pembro + Carbo + Abraxane or Paclitaxel (KN-407) ^{4, 5, 6}	Nivo + Ipi (CM-227 Part 1) ^{7, 8, 9}	Nivo + Ipi + 2 cycles Platinum + Paclitaxel (sq) or Pemetrexed (non-sq) (CM-9LA) ¹⁰	
Population	Non-sq NSCLC Whole population N = 616	Sq NSCLC Whole population N = 559	Sq + non-sq NSCLC Whole population N = 1166	Sq + non-sq NSCLC Whole population N = 719	
Primary endpoint	OS, PFS, intragroup crossover allowed	OS, PFS, intragroup crossover allowed	PFS in high TMB, OS in PD-L1 ≥ 1% Intragroup crossover not allowed	OS, intragroup crossover not allowed	
ORR	48.3% pembro + chemotherapy Vs. 19.9% chemotherapy	62.6% pembro + chemotherapy Vs. 38.4% chemotherapy33.1% nivo-ipi Vs. 27.8% chemotherapy		38% nivo-ipi-chemotherapy Vs. 25% chemotherapy	
PFS	9.0 mos pembro + chemotherapy Vs. 4.9 mos chemotherapy (HR = 0.49)	8.0 mos pembro + chemotherapy Vs. 5.1 mos chemotherapy (HR = 0.57)	5.1 mos nivo-ipi Vs. 5.5 mos chemotherapy (HR = 0.79)	6.7 mos nivo-ipi-chemotherapy Vs. 5.0 mos chemotherapy	
OS	22.0 mos pembro + chemotherapy Vs. 10.6 mos chemotherapy (HR = 0.56)	17.1 mos pembro + chemotherapy Vs. 11.6 mos chemotherapy (HR = 0.71)	17.1 mos nivo-ipi Vs. 13.9 mos chemotherapy (HR = 0.73)	15.6 mos nivo-ipi-chemotherapy Vs. 10.9 mos chemotherapy (HR = 0.66) (HR = 0.69 at IA)	
Survival rate	70.0% vs. 48.1% 12-month OS 45.7% vs. 27.3% 24-month OS	73% vs. 50% 12-month OS	64% vs. 54% 12-month OS 40% vs. 30% 24-month OS	63% vs. 47% 12-month OS	
Duration of Response	12.4 mos pembro + chemotherapy Vs. 7.1 mos chemotherapy	8.8 mos pembro + chemotherapy Vs. 4.9 mos chemotherapy	19.6 mos nivo-ipi Vs. 5.8 mos chemotherapy	11.3 mos nivo-ipi-chemotherapy Vs. 5.6 mos chemotherapy	
Grade 3-4 (5) (Treatment related) AEs	72.1% pembro + chemotherapy Vs. 66.8% chemotherapy (Entire Population, All Causes)	74% pembro + chemotherapy Vs. 70% chemotherapy (Entire Population, All Causes)	32.8% nivo-ipi Vs. 36.0% chemotherapy (Treatment-related)	47% nivo-ipi-chemotherapy Vs. 38% chemotherapy (Treatment-related)	
Discontinuation Rate	33.6% pembro + chemotherapy Vs. 16.3% chemotherapy (Entire Population, All Causes)	27% pembro + chemotherapy Vs. 13% chemotherapy (Entire Population, All Causes)	18.1% nivo-ipi Vs. 9.1% chemo (Treatment-related)	19% nivo-ipi-chemotherapy vs. 7% chemotherapy (Treatment-related)	

1), Ghandi L, et al. NEJM. 16 April 2018. 2), Gadgeel S, et al. Presented at ASCO 2019. Abstract 9013. 3) Rodriguez-Abreu D. Presented at ASCO 2020. Abstract 9582. 4), Paz-Ares L, et al. Presented at ASCO 2018. Abstract 105. 5), Paz-Ares, et al. N Engl J Med 2018; 379:2040-2051. 6), Paz-Ares L, et al. Presented at ESMO 2019. Abstract LBA82. 7), Peters S, et al. Presented at ESMO 2019. Abstract LBA82. 7), Peters S, et al. Presented at ESMO 2019. Abstract LBA82. 7), Peters S, et al. Presented at ESMO 2019. Abstract Society 2019. 9), Ramalingam S, et al. Presented at ASCO 2020. Abstract 9500. 10), Reck M, et al. Presented at ASCO 2020. Abstract 9501.

The Efficacy of PD-1 + Chemotherapy Is limited in PD-L1 Negative Patients, While Addition of First Generation CTLA-4 Antibody Only Brings Moderate Excess Benefit

- The benefit of PFS by PD-1 + chemotherapy in subgroup of PD-L1 <1% was limited and not as high as subgroup of PD-L1 >1%.
- Combination of first generation anti-CTLA-4 antibody with anti-PD-1 only brings moderate excess benefit over PD-1 + chemotherapy in this population.
- There remains high unmet medical needs for NSCLC patients in the immunotherapy era, especially in patients who have negative PD-L1 expression.

Treg Is the Main Suppressor of Anti-Tumor Immunity and Is Associated with Poor Prognosis

Lim et al. Gut. 2019 May;68(5):916-927.

High Infiltration of Tregs in Tumors and Regional Lymph Nodes but not in Peripheral Blood Is Associated with A Significant Poor Prognosis in NSCLC

Survival Time (Months)

FIGURE 4. Kaplan-Meier recurrence-free survival curve according to Foxp3 expression, log-rank p = 0.004.

Hanagiri et al. Lung Cancer. 2013; 81(3), 475-479. Shimizu et al. J Thorac Oncol. 2010;5(5):585-90. Tao et al. Lung Cancer . 2012 Jan;75(1):95-101.

Ratio of PD-1 Positivity (%) in CD8+ T cells to PD-1 Positivity (%) in eTreg Cells Predicts Responses to PD-1 Blockade Therapies

Kamagai et al. Nat Immunol . 2020 Nov;21(11):1346-1358..

Dark Side of Anti-PD-1 Treatment: Hyperprogression

Around 10% of patients treated with anti-PD-1 had hyperprogression and dismal prognosis

A Immunotherapy cohort

- Hyperprogressive disease (HPD) was defined as disease progression at the first evaluation with ΔTGR exceeding 50%.
- Among 406 advanced NSCLC patients treated with PD-(L)1 inhibitors, 56 (13.8%) were classified as having HPD.
- Patients experiencing HPD within the first 6 weeks of PD-(L)1 inhibitor treatment had significantly lower OS compared with patients with progressive disease (median OS, 3.4 months [95%CI, 2.8-7.5 months] vs 6.2 months [95%CI, 5.3-7.9 months]; hazard ratio, 2.18 [95%CI, 1.29-3.69]; P = .003).
- Among 59 eligible patients treated with chemotherapy, 3 (5.1%) were classified as having HPD.

PD-1+ Tregs Amplified by PD-1 Blockade Promote Hyperprogression of Cancer

Depletion of Treg may help to treat and prevent hyperprogression during an-PD-1 treatment

- (Left) Comparison of GC tissue samples before and after anti–PD-1 therapy revealed that the treatment markedly increased tumorinfiltrating proliferative (Ki67+) eTreg cells in HPD patients.
- (Up) in mice, antibody-mediated blockade of PD-1 in Treg cells increased their proliferation and suppression of antitumor immune responses.

Anti-tumor Activity Is Mainly Achieved by Intratumoral Treg Depletion, While CTLA-4 Blockade Might Cause IrAEs and even Treg Hyper-proliferation

IrAE is caused by inhibiting the conversion of

CTLA-4 blockade disrupts the CTLA-4 dependent feedback loop and causes the CD28-mediated expansion of tumor-associated Treg cells

Du et al. Cell Research 2018, 28:1–17. Marangoni et al. Cell 2021, 184, 3998–4015.

Anti-Tumor Activity of CTLA-4 Antibody Is Dependent on Intratumoral Treg Depletion, While Not Necessarily Dependent on CTLA-4 Blockade

Du et al, Cell Research (2018) 28:1–17. Romano et I. PNAS . 2015 May 12;112(19):6140-5.

CTLA-4 Blockade Enhances Proliferation of Tregs and Limits the Anti-Tumor Activity

Summary: Develop Treg Targeted Treatment to Expand the Therapeutic Potential of IO

- Treg is the main suppressor of anti-tumor immunity, high infiltration of Tregs in tumors is associated with poor prognosis
- Hyperprogression and dismal prognosis associated with anti-PD- treatment, might be caused by amplification of PD-1+ Tregs in tumor
- Anti-tumor activity of CTLA-4 antibody is mainly dependent on intratumoral Treg depletion

Next generation anti-CTLA-4 antibody with enhanced Treg depletion might overcome the resistance to immunotherapy and expand the therapeutic potential

THANK YOU

HBM HOLDINGS-B 02142.HK www.harbourbiomed.com

HARBOUR BIOMED

HBM4003 Leading the Way of Next Gen IO therapy Clinical Validation of Treg Depletion Mechanism

Dr. Xiaoxiang Chen Chief Development Officer, Harbour BioMed

HBM HOLDINGS-B 02142.HK www.harbourbiomed.com

HBM4003: Next Generation Anti-CTLA-4 With Encouraging Efficacy and Safety Profile

HBM4003 is a **next generation anti-CTLA-4** fully human Heavy-Chain-Only Antibody (HCAb) with enhanced ADCC for T_{reg} depletion and unique PK resulting reduced drug exposure

HBM4003 demonstrated **potent tumor growth inhibition** and prolonged survival in mouse tumor models and a **favorable safety profile** compared to Ipilimumab

Preliminary clinical data from mono dose escalation trial validated MOA and PK/PD profile and demonstrated encouraging efficacy and tolerability

The 1st clinical abstract has been presented at annual ESMO Congress in September 2021

Ph2 trials have been kicked off globally for both mono and combo therapy, covering various solid tumors including melanoma, HCC, RCC, NEN and NSCLC

HBM4003: Leading Development of Next Gen Anti-CTLA-4 Therapeutics with Novel MoA to Improve Efficacy and Safety

Unique Design With Dual Mechanism of Action – Checkpoint Inhibition and Treg Depletion

- HBM4003 dual mechanism of action inhibits negative signaling from the interaction of CTLA-4 and the costimulatory molecule B7, and depletes immune suppressive regulatory T cells (T_{reg}) through enhanced ADCC
- HBM4003 demonstrated near dose-proportional pharmacokinetics (PK), extended pharmacodynamic (PD) effect, and low immunogenicity

Preclinical Evidence – Superior TIL T_{reg} Depletion Activity

100x More Potent Than Ipilimumab Analogue

Superior T_{reg} Depletion Activity in Comparison to Ipilimumab Analogue as Measured in Vitro via ADCC Killing Assay

 T_{reg} depletion by HBM4003 in primary human PBMCs in in vitro ADCC assay

Led to Substantial Depletion of TIL $\rm T_{regs}$ in MC38 Bearing hCTLA-4 KI Mice

- In vivo T_{reg} (%) in tumor, spleen, and blood in MC38-bearing hCTLA-4 KI mice (3 mice per group)
- Samples were collected 24hrs post 2nd dosing and analyzed by FACS

Translation Medicine Evidence – Selective Intratumor T_{reg} **Depletion and CD8+** Stimulation

Peripheral Blood

Validation of Proclinical Data

Dual Mechanism Makes HBM4003 More Efficient with Optimized Therapeutic Profile

Preclinical Data: Comparable Mean Survival Time At 1/6 Of Dose Compared to Ipilimumab, and Predicted Human Exposure Is Much Lower (~1/35 of AUC)

Days Post Treatment

lpilimumab (10mg/kg q3w) 200 120 120 120 100 150 100 ipilimumab 50 20 60 40 80 0 Time (day) HBM4003 (1.5mg/kg q3w) 40 HBM4003 concentration (ug/mL) 0 20 60 80 40 Time (day)

Simulated PK Exposure at Steady State						
AUC _(0-tau) µg*day/ml	Cmax µg/ml	Cmin µg/ml				
1942.7	744.9	576.3				
AUC _(0-tau) µg*day/ml	Cmax µg/ml	Cmin µg/ml				
54.27	40.26	2.50				

Global Development Roadmap for HBM4003 Aiming to Unlock Potential of Broad Tumor Setting

Mono Therapy: Study 4003.1 Overall Design Outline

Includes Two Parts: Part 1 Abstract Read Out at 2021 ESMO Congress

4003.1 – Key Patient Features and Demographics Heavily Pre-treated including PD-1, Diversified Cancer Types Mixed with Rare, Cold Tumors

TOTAL

- 20 patients with advanced solid tumors (no melanoma patients), at 4 Australian sites
- Heavily pre-treated population
 - ✓ 13 out of 20 patients (65%) having received 2 or more prior regimens
 - ✓ 8 out of 20 patients (40%) were treated previously with immune checkpoint inhibitor
 - ✓ The average age of subjects is 62.5 (SD=11.5)
- None of the patients studied had melanoma

	0.3mg/kg QW (N=7)	0.45mg/kg Q3W (N=7)	0.6mg/kg Q3W (N=6)	Total (N=20)	Tumor Type	Safety Assessment (
ge, mean (SD)	67.6 (8.3)	62.3 (10.2)	56.8 (15.0)	62.5 (11.5)	Endometrial Carcinoma	1
					PRCC	1
ECOG PS, n(%)					ccRCC	4
0	3 (42.9)	3 (42.9)	3 (50.0)	9 (45.0)	Prostate Cancer	2
1	4 (57,1)	4 (57.1)	3 (50.0)	11 (55.0)	HCC	1
	. (0111)	. (0)	0 (0010)		Penile Cancer	1
N of Previous Treatmen	t Lines, n(%)				Testicular Cancer	1
0	2 (28.6)	0	0	2 (10.0)	Esophagus Cancer	2
4	2 (22 6)	2 (28 6)	1 (16 7)	5 (25 0)	Colorectal Cancer	1
	2 (20.0)	2 (20.0)	1 (10.7)	5 (25.0)	Breast Cancer	2
2 or more	3 (42.8)	5 (71.4)	5 (83.3)	13 (65.0)	Bladder Cancer	1
					HNSCC	1
Previous PD-1/PD-L1	2 (28.6)	3 (42.9)	3 (50.0)	8 (40.0)	NSCLC	1
meraples, n(%)				Mesothelial Cancer	1	

	+	5
	2	2
	1	1
	1	
	1	
,	2	1
	1	1
	2	2
	1	1
	1	1
	1	
	1	1
	20	15
		71

Post-Treatment Data for Antitumor Assessment (n)

1

4003.1 - HBM4003 Was Well Tolerated

- No toxicity was reported related to lung, kidney, heart or endocrine system
- No TRAE was > Grade 3
 - Grade 3 TRAEs included diarrhea, and 1 case of abnormal liver function test who has HCC. All were manageable and reversible
- The most common TRAE of any grade was diarrhea/enterocolitis, manageable & reversible with SOC
- Maximum tolerated dose (MTD) was not achieved
 - No dose limiting toxicity (DLT) was observed in any Q3W dose level
- No treatment-related serious adverse event (TRSAE) was reported at 0.45mg/kg Q3W

Preferred Term	0.3mg/ (N=	kg QW =7)	0.45mg/ (N=	kg Q3W =7)	23W 0.6mg/kg Q3W (N=6)		Total (N=20)	
	Any Grade	Grade 3	Any Grade	Grade 3	Any Grade	Grade 3	Any Grade	Grade 3
Any irAE	4 (57.1)	1 (14.3)	2 (28.6)	1 (14.3)	5 (83.3)	3 (50.0)	11 (55.0)	5 (25.0)
Enterocolitis	2 (28.6)	0 (0.0)	1 (14.3)	0 (0.0)	3 (50.0)	0 (0.0)	6 (30.0)	1 (5.0)
Diarrhea	1 (14.3)	1 (14.3)	0 (0.0)	0 (0.0)	3 (50.0)	3 (50.0)	4 (20.0)	4 (20.0)
Rash	3 (42.9)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	3 (15.0)	0 (0.0)
Abnormal hepatic function ⁽¹⁾	0 (0.0)	0 (0.0)	1 (14.3)	1 (14.3)	0 (0.0)	0 (0.0)	1 (5.0)	1 (5.0)
Immune-mediated hepatitis	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (16.7)	0 (0.0)	1 (5.0)	0 (0.0)

Source: Publicly available posters HBM4003 data presented at ESMO 2021 Congress.

Note: Enterocolitis includes colitis and immune-mediated enterocolitis; rash includes rash and rash maculo-popular.

(1) As measured by elevated blood bilirubin and transaminases levels, and abnormal liver function test scores.

4003.1 – Differentiated Safety Profile Indicated From Preliminary Data

Even with limited number of patients, encouraging HBM4003 safety profile especially given the extent of pre-treatment in patients

- More severe baseline conditions: more prior treatments (including PD-(L)1), higher ECOG, broad range of solid tumors mixed with cold tumors vs ≥ 2 line melanoma for Ipilimumab
- irAE & TRAE focused on diarrhea vs broad involvement with vital organs

	HBM4003 Overall, n(%)	HBM4003 0.45mg/kg Q3W, n(%)	lpilimumab 3mg/kg Q3W, n(%)
Total No. Patients	20 (pooled)	7	137/131 (AE)
Tumor Types	Solid tumors	Solid tumors	Melanoma
Prior Treatment Lines	≥2: 13 (65.0) Prior PD-(L)1 Therapy: 8 (40.0)	≥2: 5 (71.4) Prior PD-(L)1 Therapy: 3 (42.9)	≥1: 137 (100)
ECOG	0: 9 (45.0) 1: 11 (55.0)	0: 3 (42.9) 1: 4 (57.1)	0: 72 (52.6) 1: 64 (46.7) 2: 1 (0.7)
TRAE	20 (76.9)	4 (57.1)	105 (80.2)
irAE	Total: 11 (55.0) Enterocolitis: 6 (30.0) Diarrhea: 4 (20.0) Rash: 3 (15.0) Abnormal hepatic function ⁽¹⁾ : 1 (5.0) Immune-mediated hepatitis: 1 (5.0)	Total: 2 (28.6) Enterocolitis: 1 (14.3) Abnormal hepatic function ⁽¹⁾ : 1 (14.3)	Total: 80 (61.1) Dermatologic: 57 (43.5) Diarrhea: 36(27.5) Colitis: 10 (7.6) Endocrine: 10 (7.6) Abnormal hepatic function ⁽¹⁾ : 5 (3.8) Other: 6 (4.6)
Gr ≥3 irAE	Total: 5 (25.0) (No irAEs > G3) Enterocolitis: 1 (5.0) Diarrhea: 4 (20.0) Abnormal hepatic function ⁽¹⁾ : 1 (5.0)	Total: 1 (14.3) (No irAE>G3) Abnormal hepatic function ⁽¹⁾ : 1 (14.3)	Total: 19 (14.5) Diarrhea: 6 (4.6) Colitis: 7 (5.3) Dermatologic: 2 (1.5) Endocrine: 5 (3.8) Other: 3 (2.3)

Note: TRAE: treatment related adverse event; irAE: immune related adverse event. Ipilimumab data from Hodi FS, et al. N Engl J Med. 2010. (1) As measured by elevated blood bilirubin and transaminases levels, and abnormal liver function test scores.

4003.1 – Encouraging Preliminary Efficacy Been Observed with HBM4003 Monotherapy

FIH with Dose Escalation, Heavily Pre-treated (including PD-1), Broad Range of Solid Tumors

Maximum Percent Change in Sum of

Best Overall Response, n (%)

	0.3mg/kg QW (n=7)	0.45mg/kg Q3W (n=7)	0.6mg/kg Q3W (n=6)
CR	0 (0.0)	0 (0.0)	0 (0.0)
PR	0 (0.0)	1 (14.3)	0 (0.0)
SD	5 (71.4)	0 (0.0)	4 (66.7)
PD	1 (14.3)	3 (42.9)	1 (16.7)

Tumor Shrinkage Reported for 3 SD Patients (0.3mg/kg QW)

Note: FIH = first in human; CR = complete response; PR = partial response; SD = stable disease; PD = progressive disease; Breast cancer (BC), colorectal cancer (CRC), clear cell renal cell carcinoma (RCC), esophagus cancer (EC), mesothelial cancer (MC), prostate cancer (PC), bladder cancer (BLC), papillary renal cell carcinoma (PCRC), head and neck squamous cell carcinoma (HNSCC), hepatocellular carcinoma (HCC).

4003.1 – Preliminary Monotherapy Efficacy Data Show Potential in Multiple Solid Tumors

Effect Could Be Attributed to HBM4003's Dual MOA vs. Ipilimumab Which Showed Efficacy Primarily in Melanoma

HBM4003 Monotherapy	 2 Clinical Responses 1 patient with HCC who was pre-treated with Sorafenib, Lenvatinib and anti-PD-1 had confirmed partial response (PR) 1 patient with CRPC had PSA response for > 71 weeks with SD in RECIST assessment Study did not include melanoma patients 9 patients had stable disease (SD 60%) 15 patients had at least 1 post-treatment tumor assessment Tumor shrinkage was reported in 3 patients
Ipilimumab Monotherapy	 Most Clinical Responses in solid tumors are in melanoma All clinical responses in solid tumors were dosed at 3 or 10mg/kg With >1000 patients, 4 clinical responses were reported across all solid tumors outside of melanoma

Note: Efficacy is assessed according to Response Evaluation Criteria in Solid Tumors (RECIST) v1.1. An independent imaging reading group was hired to review CT scan and RECIST assessment for responders.

4003.1 – HCC Patient pre-treated with PD-1 mAb: Confirmed PR in Target Lesion

Patient profile

- 64-year-old man, Asian, HBV infected
- Prior treatments: sorafenib, lenvatinib and anti-PD-1
- HBM4003, 0.45 mg/kg Q3W

Strong and durable efficacy observed

 Tumor reduction reached 64.4% at week 22 and continued to remain as 64.4% at week 40 for target lesions, response of non-target lesions was CR at week 22

	Location	Baseline	6 W	11 W	16 W	22W	28 W	34W	40 w
Non Target Lesions	Lung , LN, Left Liver	NA	Non- CR/Non- PD	Non- CR/Non- PD	Non- CR/Non- PD	CR	Non- CR/Non- PD	Non- CR/Non- PD	Non- CR/Non- PD
Target Lesions (mm)	Right Superior Liver, Right Kidney	225	175	115	105	80	80	80	80
	Change From Baseline	N/A	22.2%	48.9%	53.3%	64.4%	64.4%	64.4%	64.4%
AFF	^{>} u/L	170	5	5	9	6	7	10	ND
Overall F	Response	NA	SD	PR	PR	PR	PR	PR	PR

Note: HCC = hepatocellular carcinoma; PR = partial response. The target lesion was measured at the longest diameter.

4003.1 – CRPC Patient: Durable SD by RECIST 1.1 associated with PSA Response

Patient profile

- 80-year-old man, HBM4003 0.6 mg/kg Q3W
- Prior treatments: docetaxel, cabazitaxel and bicalutamide

PSA response

More than 50% reduction in PSA level from baseline at 6 week

Extended clinical benefits

- The PSA response continues until week 71
- The SD of adrenal and axillary lymph node by RECIST 1.1 also last until week 35, no CT scan has been done since then but the
 patient stay well without any anti-tumor treatment

	May 2020	Jun 2020	July 2020	Dec 2020	Jan 2021	Apr 2021	Sep 2021
	Baseline	5 W 🔶	10 W	30w	35W	45 W	71 W
PSA (ng/ml)	240	92 PSA response	89 PSA response	89 PSA response	74 PSA response	58 PSA response	77 PSA response
Sum of Diameter of TLs(mm)	45	45	45	_	_	-	-
Overall Response	NA	SD	SD	_	SD	-	-

Note: CRPC = castration-resistant prostate cancer; SD: stable disease; PSA: prostate-specific antigen; TLs: Target lesions

4003.1 Conclusion: Preliminary Data Demonstrate Encouraging Activity across a Broad Range of Tumors with Improved Tolerability for HBM4003 vs Ipilimumab

HBM4003 is the next generation anti-CTLA-4 fully human HCAb with enhanced ADCC for T_{reg} depletion and the first HCAb under clinical development

Novel MOA

• Selective intratumor Treg depletion been validated by both pre-clinical and clinical evidence

Well Tolerated

- The most common TRAE of any grade was diarrhea/enterocolitis
- No toxicity was reported related to lung, kidney, heart or endocrine system
- No TRAE was > Grade 3
- Maximum tolerated dose (MTD) was not achieved

Encouraging Efficacy

- 9 (out of 15) patients achieved SD with heavily pre-treated tumors
- 2 clinical response- 1 patient pre-treated by all SOCs (including PD-1) was confirmed as PR, 1 patient had PSA response with SD by RECIST

BIN HBM4003 Outlook The First Full Evidence Chain to Demonstrate Next Gen Treg MoA Therapeutics

THANK YOU

HBM HOLDINGS-B 02142.HK www.harbourbiomed.com

Batoclimab: A Breakthrough Therapy for Autoimmune Diseases

Prof. Chongbo Zhao Professor of Neurology Huashan Hospital of Fudan University

Immune System and Autoimmune Diseases

- About 4.5% of the population has autoimmune diseases
- > 80 autoimmune diseases
- > 30 of these neuroimmunological disorders
- The nervous system can be secondarily affected due to a variety of autoimmune diseases (SLE, Sicca syndrome, etc.)

Neuroimmunology Evolution

CNS: Not An Immunoprivilaged Site Anymore

J Exp Med. 2018 Jan 2;215(1):35-49.

Common Features of Neuroimmune Disorders

Susceptibility Gene

Loss of autoimmunity regulation

Lymphocytes that responds to autoantigens

Environmental stimulation

Infection tissue damage inflammation

Autoreactive lymphocytes enter tissues

Autoreactive T/B Lymphocyte Activation

Tissue damage: Development of autoimmune diseases

Intrinsic factors

- Gene susceptibility
 - HLA polymorphisms
 - SNPs enriched in major immune pathways
 - Genetic susceptibility of the X chromosome ? Female 个

Extrinsic/Predisposing Factors

- Pathogen infection
 - EBV、CMV、C. *jejuni,* etc
- Gut bacteria
 - GDP-L-fucose synthase
- Tumor
 - Ectopic antigen
- Vitamin D

Molecular mimicry Epitope spreading

Neuro Immune Disease – Central Inflammatory Demyelination

Disease/Target Antigen	Pathogenic autoantibody	Hallmark autoantibody	Clinical characteristics	a MMOSD
MS	None	None	Relapsing-remitting; neurological signs and symptoms	Clostridium perfringens Anti-IL-6R Plasmapheresis
NMOSD	AQP4	AQP4	Optic neuritis; transverse myelitis; area postrema syndrome	Neutrophil IL-6 Anti-CD20 Anti-AQP4 IgG Complement Inhibition Complement Complement Complement
ADEM		~40% MOG	Acute encephalopathy; neurological symptoms and signs; optic neuritis; myelitis	AQP4
MOG-AD	MOG	MOG	Recurrent optic neuritis; papilledema; myelitis; cranial nerve involvement	Astrocyte Oligodendrocyte
GFAP		GFAP	Subacute and chronic meningitis; encephalitis; myelitis; papilledema	Pia mater CSF

Neuro Immune Disease – Auto Immune Encephalitis

Pathogenic antibody	Clinical main phenotype	Tumor correlation
NMDAR IgG1	Pan-encephalitis; autonomic dysfunction; extrapyramidal symptoms	~60%, ovarian teratoma
LGI1 lgG1, lgG4	limbic encephalitis; dysmyotonia of face, shoulder and arm; hyponatremia	5 – 10%, thymoma
AMPAR	limbic encephalitis	> 50%, cell lung cancer, thymoma, breast cancer
GABABR	limbic encephalitis; cerebellar ataxia	> 50%, small cell lung cancer
GABAAR	Intractable epilepsy	~30%, thymoma
GlyR	PERM; brain stem encephalitis	
CASPR2 lgG1, lgG4	limbic encephalitis; Autonomic dysfunction; Neuromyotonia; Insomnia	20%, thymoma
MGluR1	Cerebellar ataxia; ageusia	~10%, Hodgkin lymphoma
MGluR5	Encephalitis; epilepsy	< 10%, lymphoma
IgLON5 IgG4	Sleep disorder; extrapyramidal symptoms	
DPPX IgG1, IgG4	Diarrhea; encephalitis; epilepsy; PERM; cerebellar ataxia	< 10%, lymphoma

Neuro Immune Disease – Peripheral Neuropathy

Disease	Target antigen	Autoantibody	Clinical characteristics
AIDP	Unknown	None	Acute peripheral neuropathy
AMAN	GM1, GD1a	GM1, GD1a	Motor axonal neuropathy
AMSAN	GalNAcGD1a, GM1, GD1a	GalNAcGD1a, GM1, GD1a	Sensorimotor axonal neuropathy
Miller-Fisher	GQ1b, GT1a	GQ1b, GT1a	Ophthalmoplegia; Ataxia; Loss of tendon reflexes
CIDP	Mostly unknown	Unknown	Chronic sensorimotor neuropathy
	NF155	NF155	Tremor; deep sensory ataxia
	NF186/140	NF186/140	Progressive disease course
	CNTN1	CNTN1	Deep sensory ataxia; glomerulonephritis
	Caspr1	Caspr1	Severe sensorimotor neuropathy; pain
MMN	GM1	GM1	Chronic progressive asymmetric motor neuropathy; motor block
MAG-PN	MAG	MAG	Deep sensory ataxia; distal muscle weakness
CANOMAD	GD3, GD1b, GT1b, GQ1b	IgM, cold agglutinin	Deep sensory ataxia; ophthalmoplegia

Front Neurol. 2021 Apr 14;12:664664.

Neuro Immune Disease – Neuromuscular Junction Disease

Disease	Target antigen	Autoantibody	Clinical Characteristics
MG	AChR	AChR lgG1, lgG3	
	MuSK	MuSK lgG4	Fluctuating skeletal muscle weakness
	LRP4	LRP4 lgG1, lgG2	
LEMS	Presynaptic membrane VGCC	VGCC	Fluctuating skeletal muscle weakness; lower limb > > upper limb; autonomic dysfunction; tendon reflex facilitation phenomenon

PRE-SYNAPTIC NERVE TERMINAL

Clinical Practice and Unmet Medical Needs in Neuroimmune Diseases

Batoclimab: A Breakthrough Therapy for IgG Mediated Autoimmune Diseases with a Portfolio-in-a-product Approach

Batoclimab – Ph1 Study Results* (PD: Serum IgG reduction)

Significant Reduces Serum IgG Following SC or IV, Results was Published on AAO 2019

- Mean maximum IgG reduction of 78.4% from baseline at weekly SC dose of 680mg (4 doses), suggests HBM9161 is potential to be best in class product
- An average reduction in total IgG of 47% was observed following single SC dose of 765 mg
- Total IgG reduction increased with increasing doses, with a nadir at approximately 8-10 days after a single dose

Nature Reviews Getting Specific: Targeting Fc Receptor in Myasthenia Gravis

nature reviews imm	nunology	
Explore content 🖌 About the jou	urnal Y Publish with us Y	Subscribe
nature > nature reviews immunology	nature review	ws immunology
Published: 17 August 2007	Explore content Y A	About the journal Y Publish with us Y nature reviews neurology
FcRn: the neonatal	Fc receptor con nature > nature reviews	S Explore content Y About the journal Y Publish with us Y Subscribe
Derry C. Koopenian C & Shreeran A	Published: 25 March 201	11 <u>nature</u> > <u>nature reviews neurology</u> > <u>news & views</u> > article
	Antibody responses	News & Views Published: 23 August 2021
	FcRn – not ju	U NEUROMUSCULAR DISEASE
	<u>Yvonne Bordon</u>	gravis
		Jan D. Lünemann 🖂

Myasthenia Gravis (MG) – a Prototypical Autoantibody Mediated Disease

Significant Unmet Medical Needs for Myasthenia Gravis

1. Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM. Myasthenia gravis. *Nat Rev Dis Primer*. 2019;5(1):30. 2. Fang W, Li Y, Mo R, et al. *Neurol Sci*. 2020 May;41(5):1211-1223.

3. Gilhus NE. Myasthenia Gravis. Longo DL, ed. N Engl J Med. 2016;375(26):2570-2581.

4. Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. *Lancet Neurol*. 2015;14(10):1023-1036.

First-line steroids treatment:

serious adverse reactions to long-term use

Osteonecrosis of the femoral head

Gastric ulcer Full moon face

Cataract

Immunosuppressants:

such as azathioprine, limited efficacy and slow onset

IVIg/PLEX:

Expensive;

limited accessory

Poor Quality of Life of MG Patients Under Current Treatment

Gender differences in quality of life among patients with myasthenia gravis in China. *Health Qual Life Outcomes*. 2020 Sep 3;18(1):296. doi: 10.1186/s12955-020-01549-z.

Batoclimab Phase 2 Study for the Treatment of gMG: Study Design

Two interim data reviews are pre-specified when ~15 and all subjects completed efficacy endpoint assessment at the primary time point (Day 43), respectively.

Secause a few subjects are still in the open-label or follow-up period, this data release only includes data in the double-blind treatment period (up to Day 43).

• Unblinded team has been set up to review and evaluate unblinded data, including albumin, ALP, IA package.

Rapid and Robust IgG Reduction

Available Evidence Suggests that Reduced Levels of Pathogenic IgG in Patients with MG are Associated with Clinical Benefit

Batoclimab gMG Ph2 Study - Fast, Substantial, and Persistent Clinical Improvements

Durable Clinical Improvements vs Placebo

Proportion of subjects in the double-blind period who had improved MG-ADL score at different thresholds of 2 points or more and continued for at least 4 weeks from baseline Proportion of subjects in the double-blind period who had improved QMG score at different thresholds of 3 points or more and continued for at least 4 weeks from baseline

Batoclimab: Exciting Results of Ph2 Study

Fast, strong and sustained benefit; clinically meaningful and statistically significant

- Strong correlation between IgG level reduction and disease improvement; validating focus on IgGmediated disorders
- International leading position and profound influence in the autoimmune neurological disorders area
- China's independent development: led by Chinese MG experts, focuses on Chinese clinical and Chinese MG patients, fully developed by China, earlier than the same class molecule development 2-3 years

The first breakthrough therapy designated by CDE in the neuroimmune diseases area

Batoclimab: Global Publication

Highlights of HARMONI Study – Ph3

HARMONI MRCT Ongoing: 29 sites, 144 subjects

	Timeline	
First SIV	14th Sep 2021	
First patient Screening	15th Sep 2021	
First patient randomization	25th Sep 2021	
Interim analysis	July 2022	
Last patient randomization	Aug 2022	
LPLV	May 2023	
Date base lock	Jul 2023	

....

Batoclimab Position in Autoimmune Disease Therapy

Autoimmune disease

- Great complicated clinical manifestations
- Huge unmet medical needs due to limited treatment options and severe side effects

ahl

Next generation of promising therapy, targeting the root cause shared across various autoimmune diseases

Provides the first clinical study evidence of anti-FcRn therapy in Chinese patients

Compelling overall efficacy and safety profile

THANK YOU

HBM HOLDINGS-B 02142.HK www.harbourbiomed.com